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Abstract 

Present methods for quantitative X-ray phase analysis 
make extensive use of multilinear regression. Practical 
application of these methods compels workers to 
make a choice among many different sets of experi- 
mental conditions such as the number, identity and 
relative concentration of the phases in the synthetic 
mixtures used for the solution of the regression prob- 
lem; the number and extent of the angular regions 
within which X-ray intensities are to be measured; 
and so on. There are as yet no general criteria for 
this selection, and classical statistical experimental 
methods, even such effective ones as SIMPLEX, are 
very time consuming. In the present work a Monte 
Carlo method is proposed for optimization of the 
reproducibility and detection limit for a completely 
general quantitative X-ray phase analysis. A system 
of three computer programs to this end is developed 
and applied to X-ray phase analysis of laterites, illus- 
trating the choice of a set of performing conditions 
among 20 of them. 

Introduction 
The development of X-ray diffraction led to several 
algorithms for quantitative phase analysis treatable 
by linear multiple regression methods (Bezjak, 1961; 
Naray-Szabo & Peter, 1964; Peter & Kalman, 1964; 
Karlak & Burnett, 1966; Fiala, 1972; Chung, 1974; 
Burova & Zhidkov, 1977; Zevin, 1977; Fuentes, 1982; 
Gonzalez & Roque, 1983). Most of these use a set of 
samples with known composition in the solution of 
the regression problem. 

In practice the choice of the number of those 
samples and the concentrations of their components 
determines the precision of regression coefficients. 
The choice of angular regions within which X-ray 
intensities are to be measured is also critical. Other 
factors must also be taken into account. 

At present no general criteria for optimization of 
the regression problem have been given. The problem 
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refers essentially to the distribution of experimental 
points along the whole range of the independent 
variables in hyperspace. Nevertheless, some solutions 
have been proposed (Hartmann, 1972; Fiala, 1976). 

Classical statistical experimental methods, such as 
SIMPLEX for instance, are very slow compared with 
potentially faster numerical ones. Monte Carlo 
methods permit the assay of an experimental option 
in a few minutes by a modern computer. In addition 
they avoid the necessity of measurements, and the 
distortion of results by non-statistical gross errors is 
therefore not possible. 

In the present work a Monte Carlo method is 
proposed for the evaluation of a completely general 
quantitative X-ray diffraction method. Such pro- 
cedures for simulating systems have been extensively 
used by engineers and economists but less by crystal- 
lographers. 

The general quantitative X-ray diffraction method 

The starting point for this method is the general 
intensity formula with correction for microabsorption 
(Leroux, Lennox & Kay, 1953), 

Lj=lqjxJpj(tz*)'~J 4 j = l , . . . ,  N - l ,  (1) 

where I U is the diffracted intensity by the jth phase 
in the ith peak; kij are constants; xj are the weight 
fractions; & are the densities; tz* is the mass absorp- 
tion coefficient of the mixture and aj are semiem- 
pirical constants introduced to correct the micro- 
absorption (granularity) effects.t It may be expressed 
in the following form (Gonzalez & Roque, 1983): 

o i , j = l ,  N - 1  (2) Io=ko(lz*/lz*)'~,xjlo . . . ,  , 

where/x* is the mass absorption coefficient of the j th 
phase and I ° is the intensity of the ith peak of the 
pure jth phase. The integral intensity in the ith region 

t The as's are really functions of several variables of the system 
but they can be considered as nearly constants (Gonzales, 1987). 
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is then 

N - I  

I~= 2 kijxjI°(tz*/t x*)~'j i= 1 , . . . ,  N -  1. 
j = l  

Here, the Nth phase has been considered amorphous 
by X-ray methods or indeterminable (not detectable), 
• 0 i.e. I iN--O. 

We can write (3) in the form 

N - I  

Ii: 2 AjMji i = I , . . . , N - 1  or I = A M  
j = l  

where 

In the solution of the direct problem several cases 
may be differentiated. In all cases it is necessary to 

(3) calculate A from (4)• But afterwards, if there are no 
X-ray amorphous phases or indeterminable ones, 
then ~ xj = 1 and ~ xj/z* =/x* holds, and it is possible 
to calculate xj. If there are such phases, but /z* is 
known for each sample, then xj is determinable too. 
One way of calculating/x* is to follow a process of 
successive approximations (Engelhardt, 1955; Gon- 
zalez, 1981; Gonzalez & Roque, 1983) 

(4) N-1 
/ z * ( n ) = / x * +  Y. b/[,u.*(n-1)]'~J (10) 

j = l  

and 

Mj, = kij I ° i, j = 1 , . . . ,  N -  1 (5) 

Aj=xi(tx~/tx*)'~J j = I , . . . , N - 1 .  (6) 

Formula (4) has two aspects. On the one hand it 
expresses the inverse problem, i.e. the general 
regression problem, or determination of M. On the 
other hand it expresses the direct problem, i.e. the 
calculation of A knowing the intensities and 
regression coefficients. 

The inverse problem is solved by preparing L 
different synthetic mixtures which are placed in the 
diffractometer and their intensities measured on each 
of the P = N - 1  integrated regions. Thus the follow- 
ing system of equations is obtained: 

k = l , . . . , L , i = l , . . . , P  
N - I  

I ik= y. AkjMji 
j = l  

where 

o r  

li = Am/ (7) 

where 

(m,) = (mj)i = Mj, i =  1 , . . . ,  P. 

The solution is (Draper & Smith, 1966) 

m, = (AIW-'A)-I  (AIW-'I ,)  i = l , . . . , P  (8) 

where W -~ is the inverse L x L matrix of statistical 
weights• It can be calculated from the residuals in 
analysis of variances, or postulated on the basis of 
several criteria. In practice no great error is intro- 
duced when the identity W = 1 is considered, where 
1 is the unitary matrix. 

The variance-covariance matrix of regression 
coefficients is 

V(m,) = (A 'W- '  n ) - '  (r 2, (9) 

where (r 2 is the variance of the experimental measure- 
ments of intensities. It can be estimated from the 
residual sum of squares in the analysis of variances 
of regression. 

bj= (~*) -~ ,A j (~*  - ~ *~). (11) 

/x*(n) is the nth approximation to the mass absorp- 
tion coefficient of the sample and /x*(n -1 )  the 
(n - 1)th one. Here all/x*'s (/x* included) are experi- 
mentally determined from clean phases. 

Monte Carlo method for optimization 

Now we have a rigorous mathematical algorithm for 
quantitative X-ray diffraction analysis. But there are 
several factors not fixed by the method, such as the 
number, identity and relative concentration of the 
phases in the synthetic mixtures used for the solution 
of the regression problem, the number and extent of 
the angular regions within which X-ray intensities are 
to be measured, and so on, which determine the 
effectiveness of the analysis. 

The efficiency of any analytical method may be 
qualified by the reproducibility and detection limit 
of their results. These indexes can be determined by 
the stated algorithm supposing that the fluctuations 
of intensities are normally distributed with a known 
variance, as follows. We start from (4) in the form 

A = I M  -1. (12) 

Hence, according to (6), we obtain for the pure phases 

1 =IoMo 1 (13) 

where Io is the matrix of the pure-phase intensities 
and Mo is the matrix of regression coefficients 
unaffected by errors• 

Now, by considering that intensities are affected 
by errors, a new matrix M of regression coefficients 
is calculated from (8) and then 

a = I o M  -1 (14) 

where a is a matrix whose terms are numerically near 
to those of 1. Therefore, from (13) and (14), 

a = M o M  -1 (15) 

in which the diagonal terms correspond to the 
pure-phase weight fractions (ideally 1), and the 
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Table 1. Characteristic constants of  pure minerals in laterites 

I n t e g r a t i n g  a n g u l a r  reg ions  

M i n e r a l  1 2 3 4 5 6 7 8 9 10 11 

GO 0 0 0 62.8 0 4.9 0 0 0 0 3.0 
HE 0 0 0 0 18.7 0 0 0 0 0 9.2 
GI 0 0 0 0 0 11.0 0 0 0 4.0 5.8 
LI 70.5 5.6 2.0 0 42.8 0 0 0 0 0 1.7 
CR 0 2.3 0 0 0 0 9.6 0 19-2 0 0 
CU 0 0 0 25.3 0 164-4 0 0 0 0 10.0 
MG 0 0 0 0 0 0 14.4 0 14.0 0 0 
CL 169.1 32.1 0 0 123.6 0 0 26.0 0 15.6 2.4 

p,* 

(cm 2 g - l )  

60.5 
62.0 
49.4 
60.9 

105-7 
70.9 

109-2 
64.8 

GO = goethite, HE = hematite, GI = gibbsite, LI = lizardite, CR = chromite, CU = quartz, MG = magnetite, CL = chlorite. 

t~ 

0.81 
1.00 
0.84 
0.90 
0-57 
0.74 
0-90 
0.34 

off-diagonal terms to the background (ideally 0). Thus 

N - I  

Vc = Y. ( 1 - a , , ) 2 / ( N - 2 )  (16) 
i = 1  

is the variance of concentrations, and 

N - I  N - I  

VB = ~., ~_, ( a o ) 2 / [ ( N - 1 ) 2 - S ]  (17) 
i = 1  j = l  

i~ j  

is the variance of background. The square root of 
(16) gives us the reproducibility, and twice the square 
root of (17) gives us the detection limit. 

Program system 

Programs were written in N-88 Basic for implementa- 
tion on an NEC 9801 microcomputer. The system is 
composed of three independent programs with com- 
mon files, REG, INVER and SIMUL. REG solves a 
general multiple linear regression problem. Data are 
supplied by the INVER program, and SIMUL allows 
initial conditions for simulation to be fixed. Fig. 1 is 
a block diagram of the program system. It runs fully 
automatically until the solution for a given case is 
reached. 

The program SIMUL allows the system to be linked 
in order to solve a particular Monte Carlo problem. 
This program is able to read from keyboard or from 
file the simulation parameters, the range of matrices, 
mass absorption coefficients data, intensities data, 
and the relative concentration of the phases in the 
synthetic mixtures. It also computes Aj from (6) and 
I; from (4) and transfers control to INVER. 

INVER reads data from file, generates the simu- 
lated fluctuations of intensities from subroutine 
NUMAL, which in turn generates normal pseudoran- 
dom numbers with zero mean and unit variance. 
Control is then transferred to REG in order to solve 
the general multilinear regression problem in one of 
the integrating regions from (8), including the analy- 
sis of variances with the test of lack of fit. Control is 
again transferred to INVER for the next integrating 
region, and so on automatically until the solutions 
for all integrating regions are reached. Then the 

Table 2. Angular intervals of chosen 
regions for the measurement of  intensities 

R e g i o n  no.  A n g u l a r  l imits  

1 7.10-8.30 
2 11.75-12.10 
3 12.50-13.00 
4 13-00-14.05 
5 14"75-16" 10 
6 16-20-17-35 
7 18"75-19'75 
8 19"75-20-25 
9 27"30-28-50 

10 28"25-28"90 
11 31"20-33"30 

integrating 
[A(Fe K a ) ]  
(o) 

elements of the M matrix are read from file where 
they were stored, the inverse is calculated by a Gauss- 
Jordan method, and finally the reproducibility and 
detection limit are calculated from (16) and (17). 

>. z. FILE ~ . . . .  READING / 

INTENSITIES 
SIMULATION / 

® 

} [ 
M CALCULATION 

1 
AND DETECTION LIMIT 

CALCULATION 

Fig. 1. S impl i f i ed  b lock  d i a g r a m  of  the p r o g r a m  system. 
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Table 3. Description and typical deviations obtained of peaks (SP) and background ( SB) for each of the 20 
sets of performing conditions 

Number 
of  

Set mixtures CL C R  A N  

1 20 x x x 

2A 17 x x 
2B 15 x x 
2C 15 x x 
2D 15 x x 
3A 15 x x 
3B 15 x x 
4A 15 x x 
5A 13 x 
5B 15 x 
5C 13 x 
5D 10 x 

5E 13 x 
5F 14 x 
5G 14 x 
5H l0 x 
51 12 x 
5J 12 x 
5K 13 x 
5L 11 x 

CL = chlorite, 

Phases considered Regions considered 
GO HE C U  MG GI LI MA 1 2 3 4 5 6 7 8 

x x x x x x x x x x x x x x 

x x x x x x x x x x x x x x 

x x x x x x x x x x x x x X 

x x x x x x x x x X x x x x 

x x x X x x x x x x x x x x 

x x x x x x x x x x x x x 

x x x x x x x x x x x x x 

x x x x x x x x x x x x x 

x x x x x x x x x x x x x 

x x x x x x x x x x x x x 

X x x x x x x x x x x x x 

x x x x x x x x x x x x x 

x x x x x x x x x x x x x 

x x x x x x x x x x x x x 

x X X x X x x x x x x x x 

x x x x X x x X x x x x x 

x x x x x x x x x x x x x 

x x x x x x x x x x x × x 

X X x x x x x x x x x x x 

x x x x x x x x x x x x x 

SP SB 
9 10 11 (%)  (%)  

x x 10 17 
x 15 23 
x 329 226 
x 118 109 
x 24 31 
x x 14 31 
x x 26 50 

x x 38 36 
x 5 9 
x 10 5 lO 4 

x Diverges 
x Diverges 
x 17 14 
x 11 13 
x 25 18 
x 15 12 
x 13 12 
x 16 9 
x 9 8 
x 7 7 

CR = chromite, AN = antigorite, GO = goethite, HE = hematite, CU = quartz, MG = magnetite, GI = gibbsite, LI = lizardite, MA = amorphous material. 

Table 4. Weight fractions of Iateritic minerals and 
absorption coefficients for each standard sample in sets 

5L, 5A and 5K 

M i x .  N o .  G O  H E  G I  LI  C R  

Set 5L 
1 0 0 0 0 0 
2 0.3 0 0.3 0.2 0 
3 0 0 0.2 0.5 0 
4 0 0.3 0-1 0 0-3 
5 0 0.2 0.4 0 0-2 
6 0.1 0.1 0 0 0 
7 0.4 0 0 0 0.6 
8 0 0-45 0 0 0 
9 0 0 0.5 0 0 

10 0 0-5 0 0.5 0 
11 0-6 0"4 0 0 0 

Set 5A 
1 0 0 0 0 0 
2 0.3 0 0-3 0.2 0 
3 0 0 0.2 0-5 0 
4 0 0.3 0.1 0 0.3 
5 0 0.2 0-4 0 0-2 
6 0.1 0-1 0 0 0 
7 0.4 0 0 0 0.6 
8 0 0.45 0 0 0 
9 0 0 0-5 0 0 

I0 0 0 0 0.5 0.5 
11 0 0 0 0 0"5 
12 0 0.5 0 0.5 0 
13 0-6 0.4 0 0 0 

Set 5K 
1 0 0 0 0 0 
2 0.3 0 0.3 0-2 0 
3 0 0 0.2 0-5 0 
4 0 0.3 0.1 0 0.3 
5 0 0.2 0.4 0 0.2 
6 0.1 0.1 0 0 0 
7 0 0.45 0 0 0 
8 0 0 0-5 0 0 
9 0 0 0 0-5 0.5 

10 0 0.5 0 0.5 0 
11 0-6 0.4 0 0 0 
12 0.4 0 0 0 0.6 
13 0 0 0 0 0.2 

C U  M G  M A  p . * ( c m  2 g - l )  

0"2 0"4 0.4 81"9 
0 0"1 0"1 62.1 
0.3 0 0 61"6 
0 0 0"3 73"3 
0"2 0 0 67-5 
0.8 0 0 69"0 
0 0 0 87.6 
0 0"55 0 88.0 
0 0 0.5 54.7 
0 0 0 61 "5 
0 0 0 61"1 

0.2 0.4 0"4 81.9 
0 0"1 0"1 61"9 
0.3 0 0 61 "2 
0 0 0"3 73 "3 
0"2 0 0 67.5 
0"8 0 0 69-0 
0 0 0 87 "6 
0 0"55 0 88"0 
0 0 0"5 54-7 
0 0 0 82.9 
0 0"5 0 107"5 
0 0 0 61"0 
0 0 0 61"1 

0"2 0"4 0"4 81-9 
0 0"1 0"1 61"9 
0"3 0 0 61"2 
0 0 0"3 73"3 
0"2 0 0 67"5 
0"8 0 0 69"0 
0 0"55 0 88"0 
0 0 0.5 54'7 
0 0 0 82.9 
0 0 0 61.0 
0 0 0 61"1 
0 0 0 87"6 
0 0"8 0 108"5 

GO = goethite,  HE = hemat i te ,  GI  = gibbsite,  LI = lizardite, C R  = chromite, 
C U  = quartz,  M G  = magnet i te ,  MA = amorphous mineral. 

Application to laterites 

This general quantitative X-ray diffraction method 
was applied to Cuban laterites. With this aim mass 
absorption coefficients, microabsorption corrections 
and intensities of  pure minerals were determined 
(Table 1). The mass absorption coefficients were 
measured by the direct transmission method in the 
common way (Zavyalova, Ivoilov & Denisova, 1964). 
The microabsorption corrections were determined in 
specially designed experiments in the manner pro- 
posed by Vlasov & Volkova (1974). Intensities of  pure 
minerals were measured point by point in optimized 
instrumental conditions. All measurements were car- 
ried out in a D R O N  2,0 diffractometer with rigorous 
Bragg-Brentano focusing, Fe Ka radiation and scin- 
tillation detector. The angular intervals for each 
integrating region are listed in Table 2. 

Twenty different sets of  realization conditions were 
composed in order to optimize reproducibility and 
detection limit. In all cases a 5% coefficient of  vari- 
ation for the intensities was supposed. Test conditions 
and the results obtained are listed in Table 3. The 
most satisfactory conditions are those of  5L, but 5A 
and 5K are also acceptable. Weight fractions of  stan- 
dard samples in sets 5L, 5A and 5K are listed in 
Table 4. 

Concluding remarks 

The absence of general criteria for optimizing quanti- 
tative X-ray diffraction methods is no great disadvan- 
tage when simulated experiments are applicable. They 
can reduce the time necessary to achieve optimization 
by more than a thousand times. The experimental 
assay of an option may cause several months delay, 
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but the results of a simulation are obtained in about 
30 minutes. 

If suitable indexes of efficiency are chosen then the 
same principles can be applied rigorously to other 
situations in X-ray crystallography with equal or 
greater profit. 
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Abstract 

McConnell & Heine [Acta Cryst. (1984), A40, 473- 
482] have shown that an incommensurate (IC) struc- 
ture may be fully described as an average structure 
plus two pure component difference structures C1 
and C2 modulated by c o s ( Q . r )  and s i n ( Q . r )  
respectively, where the symmetries of CI and C2 are 
related in a precise way. This result was derived from 
the conventional Landau theory where the symmetry 
is specified by an irreducible representation of the 
space group of the average or disordered structure. 
It has also been shown by de Wolff, Janssen & Janner 
[Acta Cryst. (1981), A37, 625-636] that an IC crystal 
has the symmetry of a four-dimensional space group; 
the papers discussing these superspace groups 
describe the modulation in terms of only a single 
component. It is proved here that the two descriptions 
are identical in content, showing that the structure of 
a superspace group implicitly requires the existence 

* Present address: Physics Department, Harvard University, 
Cambridge, MA 02138, USA. 

0108-7673/87/050626-10501.50 

of both CI and (72, and that their symmetries are 
uniquely related in this formulation as in the 
McConnell-Heine theory. Two one-dimensional 
examples are discussed and NaNO2 is considered in 
detail. Although the McConnell-Heine theory was 
formulated in terms of the sinusoidal modulation 
which occurs just below the transition temperature, 
it is shown that the symmetry properties derived in 
that theory continue to be valid as the modulation 
'squares up' at lower temperatures. 

I. Introduction 

In recent years it has become recognized that incom- 
mensurate (IC) modulated structures have very pre- 
cisely definable symmetry. Since the IC modulation 
destroys the regular lattice periodicity, it had at one 
time been felt that the symmetry was essentially lost. 
But this is now seen not to be the case. Given the 
lattice structure and the modulation, the structure is 
determined throughout all space, implying a correla- 
tion of essentially infinite range. This situation is quite 
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